Systematic analysis of molecular mechanisms for HCC metastasis via text mining approach

نویسندگان

  • Cheng Zhen
  • Caizhong Zhu
  • Haoyang Chen
  • Yiru Xiong
  • Junyuan Tan
  • Dong Chen
  • Jin Li
چکیده

OBJECTIVE To systematically explore the molecular mechanism for hepatocellular carcinoma (HCC) metastasis and identify regulatory genes with text mining methods. RESULTS Genes with highest frequencies and significant pathways related to HCC metastasis were listed. A handful of proteins such as EGFR, MDM2, TP53 and APP, were identified as hub nodes in PPI (protein-protein interaction) network. Compared with unique genes for HBV-HCCs, genes particular to HCV-HCCs were less, but may participate in more extensive signaling processes. VEGFA, PI3KCA, MAPK1, MMP9 and other genes may play important roles in multiple phenotypes of metastasis. MATERIALS AND METHODS Genes in abstracts of HCC-metastasis literatures were identified. Word frequency analysis, KEGG pathway and PPI network analysis were performed. Then co-occurrence analysis between genes and metastasis-related phenotypes were carried out. CONCLUSIONS Text mining is effective for revealing potential regulators or pathways, but the purpose of it should be specific, and the combination of various methods will be more useful.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of user's trustworthiness in web-based social networks via text mining

In Social networks, users need a proper estimation of trust in others to be able to initialize reliable relationships. Some trust evaluation mechanisms have been offered, which use direct ratings to calculate or propagate trust values. However, in some web-based social networks where users only have binary relationships, there is no direct rating available. Therefore, a new method is required t...

متن کامل

Prognostic molecular markers in hepatocellular carcinoma (Review article

Hepatocellular carcinoma (HCC) is the 5th commonest malignancy worldwide and is the third most common cause of cancer-related death. The prevalence is different in the world. The ability to predict patients at higher risk of recurrence and with a poor prognosis would help to guide surgical and chemotherapeutic treatment according to individual risk. As understanding of hepatocarcinogenesi...

متن کامل

TMT-HCC: A tool for text mining the biomedical literature for hepatocellular carcinoma (HCC) biomarkers identification

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. New insights into the pathogenesis of this lethal disease are urgently needed. Chromosomal copy number alterations (CNAs) can lead to activation of oncogenes and inactivation of tumor suppressors in human cancers. Thus, identification of cancer-specific CNAs will not only provide new insight into un...

متن کامل

Credit scoring in banks and financial institutions via data mining techniques: A literature review

This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...

متن کامل

Investigating the mechanism of hepatocellular carcinoma progression by constructing genetic and epigenetic networks using NGS data identification and big database mining method

The mechanisms leading to the development and progression of hepatocellular carcinoma (HCC) are complicated and regulated genetically and epigenetically. The recent advancement in high-throughput sequencing has facilitated investigations into the role of genetic and epigenetic regulations in hepatocarcinogenesis. Therefore, we used systems biology and big database mining to construct genetic an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017